Les lois de conservation
Les nombres de billes de chaque couleur
Un
exemple très familier est celui du jeu de billes
dans un lieu
de récréation: on peut promener et lancer les
billes dans tous les sens
qu'on veut, on retrouvera toujours à la fin autant qu'au
début de
billes bleues, autant de billes rouges, etc, qu'on avait au départ.
Cette loi n'est pourtant pas absolue: si on frappe
très fort on peut casser une bille. Si on chauffe
très fort on peut fondre les billes pour faire un
nombre différent de billes de taille différente;
fabriquer de nouvelles billes à partir d'autres formes de
verre, ou transformer les billes en autre chose.
De telles transformations nécessitent des conditions relativement extrêmes par
rapport à la vie de tous les jours, mais elles sont
possibles.
Les nombres d'atomes de chaque espèce
Mais si on autorise ces manipulations extrêmes, perdant la
loi de conservation du nombre de billes, il reste d'autres nombres qui
se conservent. En particulier, il y a conservation du nombre d'atomes
de chaque espèce.
En fait, les nombres d'atomes de chaque espèce se conservent
exactement comme faisaient les billes de chaque couleur dans
le lieu de récréation: ce sont des nombres
entiers d'objets dont chacun est à chaque instant
localisé dans l'espace, et ne fait que se
déplacer (du moins tant qu'on les regarde d'assez loin pour
ne pas subir les effets des incertitudes quantiques).
Dans la pratique, cette conservation des nombres d'atomes prend
l'apparence d'une conservation de quantités, car les atomes
sont habituellement trop nombreux pour être
comptés un par un. En effet, un litre d'eau contient environ
3,3.1025 molécules d'eau (chacune
formée d'un atome d'oxygène et de 2 atomes
d'hydrogène), soit 33 millions de milliards de milliards.
Une seule goutte d'eau contient environ 1021
molécules, soit mille milliards de milliards. Ainsi dans la
vie quotidienne on ne décrit pas les doses d'eau
présentes dans chaque récipient en millions de
milliards de milliards de molécules, mais comme ayant
l'apparence de quantités continues, par comparaison avec une
dose donnée ou d'après leurs masses ou le volume
occupé.
Réactions nucléaires
Cette loi de conservation du nombre d'atomes de chaque
espèce résiste à bien des contraintes
extrêmes vis-à-vis des actes quotidiens.
Cependant, elle n'est pas non plus absolue, car il y a des
circonstances encore plus extrêmes dans lesquelles elle est
rompue : les réactions nucléaires. Quoique, les circonstances pour
produire ces réactions n'ont pas toujours besoin d'être extrêmes,
puisqu'il y a la radioactivité, qui est une réaction nucléaire
spontanée (qui peut provoquer d'autres réactions nucléaires; c'est même
par le seul fait de la radioactivité provoquant des réactions
nucléaires en chaîne, qu'explosent les bombes atomiques !).
Dans les réactions nucléaires, les noyaux
atomiques peuvent éclater ou fusionner. Exactement comme des
billes qui peuvent être coupées, ou
fusionnées une fois suffisamment chaudes. Cette fois, au
lieu de nombres gigantesques d'atomes de diverses sortes, il n'y a dans
chaque noyau atomique qu'un petit nombre de ce qu'on peut regarder
comme des particules de deux sortes: les protons, et les
neutrons. Ainsi, le noyau de l'hydrogène est un seul proton,
tandis que celui de l'oxygène comporte 8 protons et 8
neutrons.
Ce ne sont pas des particules élémentaires mais
des combinaisons de plusieurs particules plus
élémentaires. Pour simplifier en pratique, on ne
discutera pas ici des constituants des protons et des neutrons, mais on
les admettra comme si c'étaient des particules
élémentaires. En effet, on ne peut en
séparer les constituants que dans des temps
extrêmement courts. Une fois les
réactions terminées, ce qui nous reste entre les
mains peut toujours se compter en nombres d'électrons, de
protons et de neutrons (tandis que les neutrinos peuvent s'échapper très loin de la Terre).
Le nombre baryonique
Oubliant les électrons, très légers,
et les neutrinos, pour ne regarder que ce qui pèse le plus lourd, on a donc
les protons et les neutrons. Les deux ont une masse voisine l'un de
l'autre.
Certaines réactions nucléaires permettent de
transformer les protons en neutrons ou inversement (en
émettant ou absorbant d'autres particules par ailleurs, dont
les électrons...). En particulier, un neutron
isolé se transformera en proton au bout d'une durée d'une valeur moyenne de 15 minutes
environ (chaque minute, chaque neutron a une chance sur 15 de se transformer).
Signalons
que certaines remarques sur les masses peuvent être étranges pour
les débutants:
les cours de physique élémentaires affirment que la masse totale de
tout système physique se conserve. Cela est en partie vrai, en partie
approximatif. Ce n'est vrai que suivant l'approximation de la mécanique
classique. Dès qu'on quitte celle-ci, il faut redéfinir la notion
de masse d'une manière plus compliquée et lui
reconnaître des propriétés étranges, comme le fait que la masse d'un
système peut différer de la somme des masses de ses constituants.
Ainsi, la masse totale d'un noyau est légèrement différente du
total des
masses des protons et les neutrons qui le constituent, pour des
raisons sur lesquelles nous reviendrons plus loin avec E = mc2.
Mais dans toutes les réactions nucléaires qui ont
été observées, on a
constaté la conservation du nombre total de protons et de
neutrons, ce qu'on appelle le nombre baryonique. On appelle "nucléon" un proton ou un neutron. Les nucléons sont appelés des baryons.
Il existe d'autres baryons que les nucléons, c'est-à-dire d'autres
manières de combiner les mêmes particules (quarks et gluons) que
celles qui forment les protons et neutrons, mais ce ne sont que des
intermédiaires instables, apparaissant puis se désintégrant au cours de
certaines réactions. Pour simplifier, on peut les oublier.
Pour
chaque particule, il existe une autre particule appelée son
antiparticule. L'idée est d'imaginer une particule comme une ligne
tracée dans l'espace-temps, ce qu'on appelle une ligne d'univers. Mais
cette ligne peut présenter une orientation, comme un sens de parcours:
du passé vers le futur, ou du futur vers le passé.
Or un même type de particule, représenté par une même sorte de ligne
d'univers, reste libre d'être orienté dans l'un ou l'autre sens comparé
au sens du temps.
Autrement dit, une fois qu'on aurait convenu d'imaginer
de représenter l'orientation
de la ligne d'univers de la particule ordinaire comme allant "du passé
vers le futur" (ce n'est qu'une convention, pas une réalité), rien n'empêche physiquement qu'il survienne la même
particule (au sens de type de ligne d'univers), mais présentée dans
l'espace-temps en sens contraire, comme rebroussant chemin "du futur
vers le passé". C'est l'antiparticule.
Les
antiparticules ont généralement la capacité de s'annihiler avec une
particule correspondante. On imagine cela sous la forme d'une ligne
d'univers qui fait un angle, où les deux branches sont
temporellement du même côté du sommet, et présentent donc une
orientation contraire vis-à-vis du temps: toutes deux dans le passé
(annihilation d'une paire) ou toutes deux dans le futur (création d'une
paire).
En
l'occurence, il n'y a qu'exceptionnellement des antiparticules. La
raison est que, une fois acquis que dans l'univers les particules sont
majoritaires, dès qu'une antiparticule apparaît elle a toutes les
chances de rencontrer une particule avec laquelle elle disparaîtra.
Cette
description des antiparticules par renversement par rapport au sens du
temps, ne signifie pas que le temps passe en sens contraire dans
l'antimatière, car le temps au sens intuitif (qui sera finalement
décrit par la thermodynamique) ne doit pas être confondu avec
l'orientation de la ligne d'univers d'une particule, qu'on peut
retourner. D'ailleurs il y a des particules comme par
exemple le photon (particule de lumière), qui sont symétriques par
rapport au temps:
elles sont identiques à leur propre antiparticule. Or, le temps
thermodynamique (qu'on expliquera: le fait que l'entropie augmente
toujours) garde
toujours le même sens indépendamment des particules en jeu.
Dans le décompte du nombre baryonique, les antiprotons et les
antineutrons (constituants des noyaux d'antimatière) doivent
être comptés négativement, bien que
leur masse soit positive et identique à celle respectivement
des protons et neutrons. Ainsi, on peut transformer de
l'énergie pure en une paire d'un proton et d'un antiproton,
bien que ce soit très difficile et dispendieux en
énergie (d'autres réactions peuvent se produire
à la place de celle voulue). Nombre baryonique de
départ: 0. Nombre baryonique d'arrivée: 1+ (-1) =
0. En pratique, comme on ne trouve ou ne produit que rarement
de l'antimatière dans la nature, on peut oublier ce cas, et
imaginer qu'on a seulement affaire à des nucléons, comme de petites billes qui se rassemblent par
sacs qui sont les noyaux atomiques, et dont le nombre total se conserve
quand les sacs s'unissent ou se divisent ou que des billes
isolées rencontrent ou quittent.
Cependant, la conservation du nombre baryonique n'est pas non plus une
loi fondamentale de la physique. On a de bonnes raisons de penser que
des réactions sont possibles, modifiant au bilan le nombre
de baryons présents, même si on n'en a pas encore
observé. Seulement, cela nécessite des conditions
particulièrement extrêmes, plus encore que celles
des réactions nucléaires "ordinaires".
Peut-être en trouvera-t-on un jour de telles non-conservations du
nombre baryonique dans les accélérateurs de
particules. Sinon, de toute façon on est quasiment certain
de pouvoir en obtenir par le procédé suivant:
Faites s'effondrer de la matière en/dans un trou noir (le
coeur d'une étoile géante explosée par
exemple), éjectez celui-ci dans l'espace intergalactique, et laissez-le reposer là pendant quelque 10100
années: d'abord, l'expansion
accélérée de l'univers l'isolera
totalement et définitivement de la vue de toute galaxie, puis il finira bien par
s'évaporer totalement sous forme de rayonnement, suivi de quelques
gerbes de particules lors du bouquet final de l'explosion du trou noir
à la fin de son évaporation. Nombre baryonique de
départ: quelque chose comme 1050. Nombre baryonique
d'arrivée: quelques broutilles à tout casser.
Il y a juste une petite difficulté: il ne restera plus personne pour contempler le
résultat.
Les lois de conservation absolues
Les lois de conservation évoquées ci-dessus (nombres de
billes, d'atomes de chaque espèce, de baryons), sont des lois
pratiques apparentes, souvent vérifiées dans les
processus ordinaires. Mais ce ne sont pas des lois fondamentales, car
elles ne sont plus valides dans des circonstances extrêmes.
Dans l'expression mathématiques des phénomènes
usuels, on fait intervenir ces lois de conservation comme des axiomes. Autrement dit,
on les suppose vrais, mais rien ne nous empêche
d'introduire dans les calculs l'hypothèse qu'exceptionnellement
elles deviennent fausses, autrement dit on ait une création ou
destruction de ces objets. Ceci peut en effet traduire la
réalité de la venue d'une situation extrême
où une non-conservations aurait effectivement lieu.
Cependant, il y a d'autres nombres ou quantités physiques
sujettes à une loi de conservation qui, quoique ressemblant
à celles qu'on vient de décrire, ont un statut
très différent, lié au contexte de la
théorie où elles s'inscrivent. En effet ces lois de
conservations se présentent non pas comme axiomes, mais comme
théorèmes. La manière dont ces quantités
sont définies, rend leur non-conservation purement et simplement
inconcevable. Une telle non-conservation serait une contradiction
logique à elle seule, comme 2+2=5.
Pour se contenter de ce qu'on peut dire sur les
phénomènes ordinaires, les lois de la physique
établies engendrent deux lois de conservation absolues, au sens
qu'on vient d'évoquer: la conservation de la charge
électrique, et la conservation de l'énergie.
La conservation de la charge électrique
Les réactions nucléaires conservent toujours la charge électrique.
La charge électrique d'un objet ordinaire suivant l'électromagnétisme classique se définit également comme une
quantité, qui en fait correspond physiquement à un
très grand nombre entier: le nombre de charges (tout comme une
quantité d'eau représentait un nombre de molécules
d'eau). C'est la différence entre le nombre d'électrons
et le nombre de protons.
La conservation de la charge au cours des créations et annihilations de particules exige de compter la charge d'une
antiparticule comme opposée à celle de la particule correspondante.
Ainsi, chaque antiparticule est de même masse (en fait positive ou
nulle) et de charge électrique opposée de celle de sa particule.
En
particulier, comme la convention est de déclarer négative la charge de
l'électron, l'anti-électron est de charge positive,
d'où son nom de positron.
Chaque transformation de neutron en proton
crée un éléctron (et un neutrino), et chaque proton ne peut
disparaître qu'avec un électron (pour donner un neutron et un neutrino), ou en produisant un
positron qui va ensuite
disparaître avec un électron.
Mais
contrairement aux exemples précédents, la loi de conservation de la
charge électrique est une loi absolue. En effet, dès le départ on ne l'a pas
déduite de l'énumération des réactions observées, mais on l'a déduite
comme un théorème de l'électromagnétisme classique. Ainsi on a la
certitude qu'aucune réaction nouvelle ne pourra jamais être découverte
qui contredirait la conservation de la charge électrique.
Même
si on décide de jeter des charges électriques dans un trou noir et de
laisser celui-ci s'évaporer, il n'y a aucun doute à ce que ces charges
finissent par en ressortir, vraisemblablement pour la plus grande part
sous forme d'électrons ou de positrons (suivant la charge électrique
contenue dans le trou noir) au cours de son évaporation jusqu'à
l'explosion
finale.
Pour en savoir plus
Voir des textes que j'avais rédigés à un niveau plus élevé (pdf):
Lois de conservation dans le plan
Lois de conservation de dimension quelconqueRetour au sommaire de physique